Researching Aggressive Corrosion in CO₂ Pipelines Tom Seeber - Atteris **APGA Convention 2023** IEA. All rights reserved. Atteris #### Atteris The Product delivered by Seller or Seller's representative to Buyer at the Canyon Reef Carriers Delivery Meter shall meet the following specifications, which herein are collectively called 'Quality Specifications': - (a) Carbon Dioxide. Product shall contain at least ninety-five mole percent (95%) of Carbon Dioxide as measured at the SACROC delivery meter. - (b) Water. Product shall contain no free water, and shall not contain more than 0.48 9 m⁻³ in the vapour phase. - (c) **Hydrogen Sulphide.** Product shall not contain more than fifteen hundred (1500) parts per million, by weight, of hydrogen sulphide. - (d) **Total Sulphur.** Product shall not contain more than fourteen hundred and fifty (1450) parts per million, by weight, of total sulphur. - (e) **Temperature.** Product shall not exceed a temperature of 48.9 °C. - (f) **Nitrogen.** Product shall not contain more than four mole percent (4%) of nitrogen. - (g) **Hydrocarbons.** Product shall not contain more than five mole percent (5%) of hydrocarbons and the dew point of Product (with respect to such hydrocarbons) shall not exceed -28.9 °C. - (h) Oxygen. Product shall not contain more than ten (10) parts per million, by weight, of oxygen. - (i) **Glycol.** Product shall not contain more than 4 x 10⁻⁵ L m⁻³ of glycol and at no time shall such glycol be present in a liquid state at the pressure and temperature conditions of the pipeline. Social Acceptance, Public Safety and Security of Supply **Network Lifecycle Management** #### RESEARCH ROADMAP #### REPURPOSING SUBSEA PIPELINES FOR CO2 Atteris ### **Table of Contents:** - FUTURE CRC - DEAKIN UNIVERSITY - Phase behaviour - Common Impurities - Corrosion caused by water # **Tertiary CO₂ Mixtures** - NO_x - SO_x - Hydrogen Sulfide sour service - Hydrogen - Nitrogen - Oxygen - Methane - Carbon Monoxide - Mercury # Complex CO₂ Mixtures • $S0_2 + 0_2$ • SO₂+NO₂ • SO₂+H₂S+O₂ • SO₂+NO₂+H₂S+O₂ Table 13. Summary of the experimental results obtained by scholars who investigated uniform corrosion rates in supercritical CO2-H2O-SO2-O2 systems. | Authors
and
Reference | CO ₂
Mixture
Pressure
[bar] | O ₂
Content
[bar
Unless
<u>Stated]</u> | SO ₂
Content
[bar
Unless
<u>Stated]</u> | water
Content
[ppm mole
Unless
Stated] | Temperature
[°C] | | low Rate
[rpm
Unless
States] | Exposure
Time [hrs
Unless
<u>Stated]</u> | Corrosion
Test
Method | Uniform
Corrosion
Rate
[mm/ <u>yr]</u> | |---|---|---|--|---|---------------------|--|---------------------------------------|---|-----------------------------|---| | Choi,
<u>Nešić</u> , &
Young [33] | 80 | 3.3 | 0.8 | 0 | 50 | | Stagnant
Conditions | 24 | Static
Autoclave | No attack | | | | 0 | 0 | Water-
saturated
CO ₂ (10 g
water
added to
autoclave) | | | | | | ~0.4 | | | | 3.3 | 0 | | | | | | | ~1.0 | | | | 0 | 0.8
(1 mol%) | | | | | | | ~5.6 | | | | 3.3 | 0.8
(1 mol%) | | | | | | | ~7.0 | | Choi &
<u>Nešić</u> [35] | 80 | 0 | 0 | | | | Stagnant
Conditions | 24 | Static
Autoclave | < 0.01 | | | | 0 | 0.8
(1 mol%) | 650 | 50 | | | | | 3.48 | | | | 3.3 | 0.8
(1 mol%) | | | | | | | 3.70 | | Xiang et al.
[56] | 100 | | 0.2
(0.2
mol%) | Water- saturated CO2 (6 g water added to autoclave to ensure saturation) | 50 | | 120 rpm | 288 | Rotating
Autoclaves | 0.2 | | | | 1000 ppm | 0.7
(0.7
mol%) | | | | | | | 0.7 | | | | | 1.4
(1.4
mol%) | | | | | | | 0.85 | | | | | 2 (2
mol%) | | | | | | | 0.9 | | | | | | | | | | 24 | | 2.0 | ## **Summary** - FUTURE CRC - DEAKIN UNIVERSITY - Existing corrosion models - Thermodynamic - Corrosion rate - Gaps - By impurity - models ### Recommendations - Flow Rate - Models for high pressure - Effects of H₂S corrosion products Flow Assurance Loop for CO2 transport ### Acknowledgements Evelyn Xu, Jason Hemetsberger – Atteris Mike Tan & Ying Huo – Deakin #### **Industry Advisors:** Graeme Strong – CCEng Deny Nugraha - SANTOS Alan Gillen - Woodside Sandra Kentish - University of Melbourne Daniel Sandana - ROSEN Mike Malavazos - DEM SA