April 2024

# Renewable gas target modelling

Overview of methodology and results





## Agenda

- 1. Methodology and assumptions
- 2. Gas Transition Model results
- 3. Economy-wide results
- 4. Discussion and questions

Additional detail on assumptions at end of slide pack if required





## Modelling scope



## Methodology overview

![](_page_3_Figure_1.jpeg)

## Scenarios and sensitivities

| No emissions<br>reduction<br>assumption | NO ACTION SCENARIO                           |                       |                      |
|-----------------------------------------|----------------------------------------------|-----------------------|----------------------|
|                                         | THEORETICAL EFFICIENT                        | Sensitivities on tech | nnical assumptions   |
| Common                                  |                                              | High Renewable Gas    | High Electrification |
| carbon<br>budget                        | TARGET SCENARIO                              | High Hydrogen         | High Biomethane      |
|                                         | ELECTRIFY EVERYTHING                         | Hydrogen Cost         | No Biomethane        |
|                                         | POSSIBLE SCENARIO                            |                       |                      |
| Earlier<br>emissions<br>reductions      | ACCELERATED RENEWABLE<br>GAS TARGET SCENARIO |                       |                      |

## **Technical assumptions**

| Assumption                               | Approach/key sources                                                                                                                           |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Wholesale electricity price              | ACIL Allen PLEXOS modelling based on ISP assumptions                                                                                           |
| Natural gas costs                        | ACIL Allen GasMark modelling                                                                                                                   |
| Hydrogen costs                           | ACIL Allen modelling based on ISP solar and wind traces, AEMO and CSIRO capex assumptions                                                      |
| Biomethane costs and availability/volume | Bioenergy Roadmap assumptions                                                                                                                  |
| Carbon budget                            | See next slide                                                                                                                                 |
| Use of offsets                           | No offsets allowed prior to 2050. Offsets volume limited to 4.2 Mt $CO_2$ -e/year from 2050. Offset cost of \$321/tCO <sub>2</sub> -e in 2050. |

## Carbon budget

| Source | ACIL Allen<br>assumptions based on<br>Australian<br>Government<br>emissions projections<br>and Safeguard<br>Mechanism Statement<br>of Reasons. |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Notes  | Straight-line<br>extrapolation from<br>2030 emissions levels<br>to net zero in 2050.                                                           |

![](_page_6_Figure_2.jpeg)

# Theoretical Efficient Policy scenario and sensitivities

![](_page_7_Picture_1.jpeg)

# The modelling shows a prominent role for renewable gas

![](_page_8_Figure_1.jpeg)

Fuel mix (PJ), Theoretical Efficient Policy scenario

- Renewable gas provides about two-thirds of the longterm energy delivered to today's gas users, in our core scenario
- Electricity provides the remaining third
- Both hydrogen and biomethane play a role in this transition

POLICY INSIGHT Renewable gas and electrification work together to decarbonise gas-using sectors

# Renewable gas retains a significant role across a range of assumptions

- The volume and timing of renewable gas development is sensitive to assumptions
- However, even in the High Electrification sensitivity, we found a significant volume of renewable gas

POLICY INSIGHT Even if technology trends favour electrification, multiple hundreds of petajoules of renewable gas will be needed to decarbonise hard-toelectrify sectors

![](_page_9_Figure_4.jpeg)

Renewable gas use (PJ), Theoretical Efficient Policy and sensitivities

## Industrial use of renewable gas is particularly robust

- Renewable gas demand was most robust in the industrial sector, with over 200 PJ demanded across all sensitivities
- This reflects the existence of large feedstock or high temperature process heat activities that are difficult or impossible to electrify

POLICY INSIGHT Renewable gas will play an important role in ensuring a range of industrial activities remain viable in Australia in a decarbonising world

![](_page_10_Figure_4.jpeg)

## Industrial renewable gas use (PJ), Theoretical Efficient Policy and sensitivities

# Sensitivity analysis shows a range of potential outcomes in the household sector

Residential fuel mix (PJ), Theoretical Efficient Policy scenario and selected sensitivities

![](_page_11_Figure_2.jpeg)

![](_page_11_Figure_3.jpeg)

![](_page_11_Figure_4.jpeg)

Natural gas Biomethane

![](_page_11_Figure_5.jpeg)

No Biomethane

![](_page_11_Figure_7.jpeg)

■ Hydrogen ■ Electricity

While the Theoretical Efficient Policy scenario showed a large role for biomethane in the long-run decarbonisation of households, sensitivity analysis showed that plausible shifts in assumptions could change this significantly

POLICY INSIGHT A range of plausible pathways exist for decarbonising households, with significant potential roles for biomethane, hydrogen and electrification

# Policy scenarios

![](_page_12_Picture_1.jpeg)

## Comparing the cost of policy scenarios

- This slide compares total cost of each policy scenario in present value terms
- The Theoretical Efficient Policy scenario is the lowest cost policy scenario, but it likely to be unachievable in the current policy environment
- The following slides consider the other policy scenarios in more detail

\$250 140.5 192.2 194.9 200.7 201.9 0.5 0.2 0.2 0.1 0.0 \$200 0.7 0.7 0.7 6.4 9.3 - 7.4 6.8 0.0 \$150 0.7 107.3 123.5 109.6 115.5 0.4 \$100 79.1 \$50 83.6 74.4 71.8 71.1 60.2 \$0 No Action **Optimal RGT** Electrify Everything Accelerated RGT Theoretical Efficient Policy Possible Electricity network Gas network Emission offsets Appliances Fuel

### Present value of resource costs (\$bn)

# An Optimal RGT can be used to de-risk renewable gas development

- While an optimisation model with perfect foresight will leave renewable gas development until late (primarily in the 2040s), this is a risky strategy, as it ignores the human (skills) and logistical elements of scaling a new industry.
- An Optimal RGT can bring forward renewable gas development to reduce the risk of these constraints delaying the energy transition.

## POLICY INSIGHT An Optimal RGT can de-risk the development of the renewable gas industry

Renewable gas share (%), by scenario

![](_page_14_Figure_5.jpeg)

|      | Theor-<br>etical<br>Efficient<br>Policy | Optimal<br>RGT |
|------|-----------------------------------------|----------------|
| 2030 | 0%                                      | 3%             |
| 2035 | 2%                                      | 9%             |
| 2040 | 6%                                      | 25%            |
| 2045 | 68%                                     | 80%            |

# Comparing the Theoretical Efficient Policy and Optimal RGT scenarios

\$0

![](_page_15_Figure_1.jpeg)

POLICY INSIGHT An Optimal RGT can decarbonise gas-using sectors at a cost only slightly higher than the theoretically efficient pathway

![](_page_15_Figure_3.jpeg)

# Comparing the Optimal RGT and Electrify Everything Possible scenarios

![](_page_16_Figure_1.jpeg)

## Investment to support the transition

- Comparing the numbers highlighted in the red circles illustrates an important aspect of the transition
- Electrification requires relatively more investment by end-users in appliances, some of whom will be capital constrained
- Adoption of renewable gas involves relatively less investment by users, and more by energy suppliers

POLICY INSIGHT A balanced policy approach that supports both renewable gas and electrification will reduce the investment burden for energy users

#### \$250 140.5 192.2 194.9 200.7 201.9 0.5 0.2 0.2 0.1 0.0 \$200 $\theta.7$ 0.76.4 9.3 - 7.4 - 6.8 0.0 \$150 0.7 107.3 123.5 109.6 115.5 0.4 \$100 79.1 \$50 83.6 74.4 71.8 71.1 60.2 \$0 No Action **Optimal RGT** Electrify Everything Accelerated RGT Theoretical Efficient Policy Possible Appliances Electricity network Gas network Emission offsets Fuel

## Present value of resource costs (\$bn)

## Understanding the cost of accelerated action

| Scenario                                 | Cost<br>relative to<br>No Action | Cost of<br>abatement<br>(\$/tCO <sub>2</sub> -e) | Cost<br>relative to<br>TEP |
|------------------------------------------|----------------------------------|--------------------------------------------------|----------------------------|
| Theoretical<br>Efficient Policy<br>(TEP) | 51.8                             | \$143                                            | -                          |
| Optimal RGT                              | 54.4                             | \$150                                            | 2.6                        |
| Electrify<br>Everything<br>Possible      | 60.2                             | \$165                                            | 8.4                        |
| Accelerated RGT                          | 61.5                             | \$164                                            | 9.7                        |

- While the Accelerated RGT scenario has higher costs in absolute terms than the Electrify Everything Possible scenario, it also achieves greater and earlier emissions reductions
- The per unit abatement cost of the two scenarios are comparable (see numbers highlighted in the red circles)

### POLICY INSIGHT

Accelerating emissions reductions using an RGT will increase cost, but the unit cost of abatement remains essentially the same as an electrification-focused approach

## Economy-wide results

![](_page_19_Figure_1.jpeg)

# The effects of inefficient policy mechanism are amplified at the whole-of-economy level

- The costs imposed by less efficient policies are magnified at the whole-of-economy levels due to:
  - Changes to taxes
  - Changes to real wage rates or employment.
- This translates to a whole of economy cost of over \$30 billion in present value terms when comparing the Electrify Everything Possible scenario and the Optimal RGT scenario.

| Scenario                      | Emissions<br>(2025-2060) | Present value of<br>resource cost<br>(2020-2060) | Abatement<br>cost | Change in real<br>economic output<br>(GDP) relative to No<br>Action scenario<br>(2020-2060) | Change in GDP<br>relative to<br>Theoretical<br>Efficient Policy<br>scenario<br>(2020-2060) |
|-------------------------------|--------------------------|--------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|                               | Mt CO <sub>2</sub> -e    | \$b                                              | \$/tonne CO2-e    | \$b                                                                                         | \$b                                                                                        |
| No Action                     | 1,591                    | \$140                                            |                   |                                                                                             |                                                                                            |
| Theoretical Efficient Policy  | 724                      | \$192                                            | \$143             | -\$121                                                                                      | \$0                                                                                        |
| Electrify Everything Possible | 729                      | \$201                                            | \$165             | -\$154                                                                                      | -\$33                                                                                      |
| Optimal RGT                   | 722                      | \$195                                            | \$150             | -\$124                                                                                      | -\$3                                                                                       |
| Accelerated RGT               | 714                      | \$202                                            | \$164             | -\$150                                                                                      | -\$29                                                                                      |

## Discussion and questions

![](_page_21_Figure_1.jpeg)

## Conclusions

- The modelling shows a significant role for renewable gas in decarbonising today's gas-using sectors.
  - This finding is robust to sensitivity analysis, though there is significant uncertainty over the timing and scale of renewable gas development.
- An RGT is an efficient policy to develop renewable gas and decarbonise gas-using sectors.
  - The modelling shows that it is slightly higher cost than the theoretically efficient, but practically unachievable, approach of using a broad-based carbon price.
  - The modelled pathways also ignore real world factors such as the need to develop skills and build confidence in emerging industries such as renewable gas, and so delay development later than what is likely to be desirable.
- A more heavily electrification-focused approach has higher overall costs, indicating the need for policy to strike a balance between electrification and renewable gas
- At the sectoral level:
  - the household sector has a range of plausible decarbonisation pathways involving both renewable gas and electrification
  - the industrial sector has a number of hard-to-electrify activities and renewable gas is likely to be essential.

## For more information

Guy Dundas 0478 104 676 g.dundas@acilallen.com.au Owen Kelp 0404 811 359 <u>o.kelp@acilallen.com.au</u>

![](_page_23_Picture_3.jpeg)

acilallen.com.au

![](_page_23_Picture_5.jpeg)

## Additional detail on assumptions

![](_page_24_Picture_1.jpeg)

## Sensitivity analysis assumptions

| Sensitivity          | Electrical<br>appliance<br>capex | Wholesale<br>hydrogen cost | Wholesale<br>biomethane<br>cost | Biomethane<br>availability<br>(volume) |
|----------------------|----------------------------------|----------------------------|---------------------------------|----------------------------------------|
| Hydrogen Cost        |                                  | -20%                       |                                 |                                        |
| No Biomethane        |                                  |                            |                                 | -100%                                  |
| High Renewable Gas   | +20%                             | -20%                       | -20%                            | +50%                                   |
| High Electrification | -20%                             | +20%                       | +20%                            | -50%                                   |
| High Hydrogen        |                                  | -20%                       | +20%                            | -50%                                   |
| High Biomethane      |                                  | +20%                       | -20%                            | +50%                                   |

## Wholesale natural gas costs

| Source | ACIL Allen GasMark<br>modelling                                                                            |
|--------|------------------------------------------------------------------------------------------------------------|
| Notes  | Costs reflect the<br>change in<br>productions costs due<br>to a change in<br>demand, not market<br>prices. |
|        | ECGM = East coast<br>gas market<br>WCGM = West coast<br>gas market                                         |

![](_page_26_Figure_2.jpeg)

## Wholesale electricity costs

| Source | ACIL Allen PLEXOS modelling                                                                            |
|--------|--------------------------------------------------------------------------------------------------------|
| Notes  | Costs reflect the<br>change in generation<br>costs due to a<br>change in demand,<br>not market prices. |
|        | NEM = National<br>Electricity Market<br>WEM = Wholesale<br>Electricity Market<br>(WA)                  |

![](_page_27_Figure_2.jpeg)

![](_page_27_Picture_3.jpeg)

## Wholesale hydrogen costs

| Source | ACIL Allen modelling<br>using various sources:<br>- AEMO ISP<br>- CSIRO GenGost<br>- APGA pipeline costs<br>- PowerMark modelling                                                     |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Notes  | Firmed costs include<br>pipeline delivery to<br>nearest demand centre.<br>Unfirmed hydrogen can<br>only be used when<br>blended into natural gas<br>streams in limited<br>quantities. |

![](_page_28_Figure_2.jpeg)

## **Biomethane costs**

| Source | Bioenergy Roadmap<br>(Deloitte & Enea)                                                                                                               |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Notes  | Low cost feedstock is<br>available from<br>concentrated waste<br>streams such as<br>wastewater or food<br>processing.<br>AD = anaerobic<br>digestion |

![](_page_29_Figure_2.jpeg)

## **Biomethane volumes**

| Source | Bioenergy Roadmap<br>(Deloitte & Enea)                                                                                                                                                                                                             |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Notes  | Some sources are<br>not made available to<br>the model prior to<br>2030 due to assumed<br>committed use under<br>the Large-scale<br>Renewable Energy<br>Target (e.g. for<br>electricity generation<br>from biogas).<br>AD = anaerobic<br>digestion |

![](_page_30_Figure_2.jpeg)

Landfill gas (available from 2025)
AD, low cost residue (available from 2025)
AD, crop residue

Landfill gas (available from 2030)AD, low cost residue (available from 2030)

## Activities and appliance efficiency

| Activity              | Sectors/ sub-sectors                                                                                                                                     | Electrical appliance<br>efficiency | Gaseous fuel<br>appliance efficiency |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------|
| Low temperature heat  | Agriculture, food & beverage, other manufacturing, gas distribution                                                                                      | 300%                               | 85%                                  |
| High temperature heat | Gas processing, food & beverage, pulp & paper, petroleum & coal products, other chemicals, iron and steel, other non-ferrous metals other manufacturing, | 85%                                | 65%                                  |
| Compression           | Gas processing, gas transmission, LNG                                                                                                                    | 94%                                | 30%                                  |
| Ammonia synthesis     | Ammonia and derivatives                                                                                                                                  | N/A                                | N/A                                  |
| Urea                  | Ammonia and derivatives                                                                                                                                  | N/A                                | N/A                                  |
| Glass making          | Glass                                                                                                                                                    | 85%                                | 50%                                  |
| Metal reheat          | Fabricating, machinery and equipment, iron and steel                                                                                                     | 75%                                | 65%                                  |
| Calcining             | Alumina                                                                                                                                                  | N/A                                | 65%                                  |
| Digestion             | Alumina                                                                                                                                                  | 330%                               | 80%                                  |
| LNG power generation  | LNG                                                                                                                                                      | 100%                               | 36%                                  |
| Cooking               | Commercial, residential                                                                                                                                  | 85%                                | 20%                                  |
| Hot water             | Commercial, residential                                                                                                                                  | 95-350%                            | 85%                                  |
| Space heating         | Commercial, residential                                                                                                                                  | 300-400%                           | 80%                                  |