Challenges Associated with Welding for Hydrogen Service and a Case Study

2023 APGA Conference Perth, Australia October 17, 2023

Presentation Outline

- Hydrogen Pipelines
 - Girth Weld Fracture Performance
- Hydrogen Transport Ships
 - Seam Weld Fatigue Performance

Hydrogen Pipelines

- Major Concern with Hydrogen Pipelines is Girth Weld Performance.
 - Potential for High Local Strains / Stress
 - Presence of Girth Weld Hi-Lo Misalignment
 - Potential Presence of Girth Weld Flaws
- Unlike Liquid Pipelines, Gas Pipelines generally experience Low Fatigue Demand, particularly girth welds.
- Major concern is Fracture at Girth Welds due to High Local Stress and Reduced Toughness.
- CRC is actively engaged in the API 1104 Hydrogen Task Group to develop Girth Weld Qualification Requirements for Hydrogen Pipelines

Hydrogen Fracture Toughness Test Methods

1) ASME B31.12 – 2019 "Hydrogen Piping and Pipelines"

- Constant Load or Constant Displacement Tests
- 2) ANSI / CSA CHMC 1-2014, "Test methods for Evaluating Material Compatibility in Compressed Hydrogen Applications – Metals"
 - Slow Rising Load Tests

Fracture Toughness Tests in Hydrogen

ASME B31.12 - 2019:

- ASME B31.12 may be well suited for Heavy Wall pressure vessel applications but not hydrogen pipelines (Thinner Wall).
- ASME B31.12 should be limited to ranking materials and demonstrate hydrogen compatibility.

ANSI / CSA CHMC 1-2014

- ANSI / CSA CHMC 1-2014 is much closer to Best Practice.
 - Slow Rising Load Tests (0.1 1.0 MPa $\sqrt{m/minute}$)
 - Underlying Standard ASTM E1820 (J / CTOD)
 - CT or SENB Specimens
 - Initiation Toughness defined as $J_{\rm 0.2/BL}\, or\, CTOD_{\rm 0.2/BL}$

Hydrogen Embrittlement (DNV JIP)

ANSI / CSA CHMC 1-2014

- The Loading Rates specified in ANSI / CSA CHMC 1-2014 are an order of magnitude faster than typical Loading Rates for Sour Service Tests:
 - 0.1 1.0 MPa√m/minute : (ANSI / CSA CHMC 1-2014)
 - 0.01 0.1 MPa√m/minute : (Sour Service)
- Reducing the Loading rate will produce a lower J or CTOD R-Curve and may reduce Initiation Toughness.
- There is extensive sour service Test Data to support the Loading Rates used in Sour Service Tests.

Application: Hydrogen Transport Ship

- Project commissioned by Provaris Energy Ltd. in support of their compressed hydrogen ship program.
- Proprietary multi-layered hydrogen tank comprised of a stainless steel liner layer and 5 structural layers of 70mm thick high-strength steel plate with a SMYS of 80 ksi (550 MPa).
- Fatigue testing is required to prove the resistance of the longitudinal 2G seam weld to high-stress low-cycle fatigue due to pressure cycling during loading and unloading
- CRC Evans : Develop Weld Procedures to Optimize Fatigue Performance.
- CFER Technologies : Fatigue Analysis and Small & Large Scale Fatigue Tests.

Criticality of Weld Root

The weld root is critical for several reasons:

- 1) Geometry of Weld toes serve as stress risers for crack initiations
- Typical single sided weld joints (ex. "V") tend to cause deflection toward the weld cap causing residual tensile stresses in the root
- 3) Root is exposed to the high pressure hydrogen environment directly with highest anticipated concentrations of hydrogen at the weld toes ²
- 4) Misalignment of pipe joints (Hi/Lo) can result in further elevation of stresses in the joint
- 5) Most sensitive pass where fit-up, and technique are vital to producing a quality bead

Modelled Von Mises stresses in an X80 girth weld near weld root (top) and cap (bottom) 2

Root Geometry

- The magnitude of stress risers at the weld toe are greatly influence by the radius and contact angle of the reinforcement
- Reinforcement with large contact angles and small radius discourage crack initiation
- Internal undercut can massively increase the stress concentration factor

Map of stress concentration factor in weld reinforcement at large contact angles (left) and small contact angles $(right)^3$

Effect of reinforcement radius and contact angle on stress concentration factor³

Hydrogen Gas Transport Modules

- Unlike Hydrogen Pipelines, Gas Transport Modules experience very High Fatigue Demand due to large Pressure Cycles.
- Fatigue and Fracture Performance of Seam Welds is Critical.
- It is important to ensure that the Weld Procedure produces a smooth Defect Free root weld to enhance fatigue performance.
- Need to optimize and verify Root Weld S-N Fatigue Performance.

Fatigue Crack Growth in Hydrogen

 A wide variety of pipeline steels display nominally the same fatigue response in high-pressure gaseous hydrogen

 The effect of pressure on fatigue crack growth rates is modest for highpressure hydrogen

Crack Growth Acceleration Factor (CGAF) can vary from 5 (low Δ K) to 30-50 (high Δ K).

Low partial pressure of hydrogen has nominally same effect as pure hydrogen on pipeline steels

S-N Fatigue Performance in Hydrogen

• The S-N Knock Down Factor (KDF) is higher at High Stress Ranges (Consistent with FCGR Test Results).

Design of Root Pass: Overview

- Mechanized root (CRC-Evans M500 Welding Bug) to minimize operator error, and improve quality/consistency
- 3 modified short-arc processes compared (Miller RMD, Fronius CMT, and Fronius LSC)

Determination of Intensity and Distribution Parameter of Heat Source

- 1G Rotated Bead on Pipe tests
- Maximized Wire Feed Speed for each process, then tested range of Travel Speeds to fit to thermodynamic model⁵

Comparison of Root Processes (1G Bead on Pipe)

<u>CMT</u>

Distribution Parameter (σ): 2.3mm Max Intensity: 233W/mm² Max Instantaneous Power: 4228W Travel Speed: 10ipm Deposition Rate: 7.7lbs/hr Penetration (bead on pipe): 2.9mm

<u>RMD</u>

Distribution Parameter (σ): 1.2mm Max Intensity: 638W/mm² Max Instantaneous Power: 2886kW Travel Speed: 12ipm Deposition Rate: 5.9lbs/hr Penetration (bead on pipe): 2.1mm

<u>LSC</u>

Distribution Parameter (σ): 2.5mm Max Intensity: 316W/mm² Max Instantaneous Power: 6278W Travel Speed: 12ipm Deposition Rate: 9.3lbs/hr Penetration (bead on pipe): 4mm

Larger Intensity produces deeper penetration, whilst larger distribution parameter results in broader, shallower penetration. An ideal process for maximum land has a combination of large intensity and distribution parameter.

Root Process in 2G Bevel and Finalized Weld Design

LSC Root in 45° bevel

		-								
				• •	-		•		+	
	-		Contraction of				1		•	
		100 EX 80	1 100 DOC 10							ie 1971 1
	10.70 Stor 100	HAZ			Weldmetal			HAZ		
arent letal		HAZ		V	Veldmet	ai		HAZ		Met
arent letal		HAZ	231	250	230	223	210			Me
arent letal	201	HAZ	231	250	230 228	223	210 234	227	197	Met 19

Preliminary weld to evaluate hardness

Final Large Scale Specimens (ref. Provaris Energy compressed H₂ ship project)

Cross-Section of Final Weld (taken from runoff tabs)

Final Large Scale Specimens (ref. Provaris Energy compressed H2 ship project)

		Pass	Wire Feed Speed (ipm)	Current (A)	Voltage (V)	True Energy (kJ/in)	Travel Speed (ipm)	
and the second second		Тор	280	200	19.6	18.6	14.4	
and production where the destruction of the		GMAW	350	240	20.1	16.7	19.9	
		Root	315	279	22.5	25.4	14.9	
		Power Source			Fronius TPS 400i			
		Pulse Program			Root: LSC Adv. Remaining: PMC			
As-welded root profile	As-welded cap profile	Motio	on Contro	l	M500 S Bug	Single 7	Forch	
		Shiel	ding Gas		90%Ar	/ 10%	CO_2	

Wire

ER100S-1

Summary

- CRC / Microalloying are actively engaged in Weld Procedure Development and Qualification for:
- Hydrogen Pipelines
 - API 1104 Hydrogen Task Group
 - ECA / Girth Weld Toughness Test Procedures
- Hydrogen Gas Transport Modules.
 - Weld Root Optimization
 - Full-Scale S-N Fatigue Testing

crcevans.com